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A nonparametric analysis of discrete time competing risks
data: a comparison of the cause-specific-hazards approach

and the vertical approach
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ABSTRACT

Nicolaie et al. (2010) have advanced a vertical model as the latest continuous time compet-
ing risks model. The main objective of this article is to re-cast this model as a nonparametric
model for analysis of discrete time competing risks data. Davis and Lawrance (1989) have
advanced a cause-specific-hazard driven method for summarizing discrete time data non-
parametrically. The secondary objective of this article is to compare the proposed model to
this model. We pay particular attention to the estimates for the cause-specific-hazards and
the cumulative incidence functions as well as their respective standard errors.

Key words: vertical model; total hazards; relative hazards; cause-specific-hazards; cumula-
tive incidence functions.

1. The first section

Competing risks have come to refer to survival analysis experiments where subjects
may fail by more than one mode of failure. The vertical model (Nicolaie et al., 2010) is
the latest competing risks model that has been advanced additional to the models proposed
by Prentice et al.(1978) and Larson and Dinse (1985). The model proposes total hazards
and relative hazards for modelling competing risks data. It is the only competing risks
model that is capable of handling the standard competing risks data as well as data that has
unknown failure causes for some subjects, that is, the model is invariant to the presence
or absence of unknown failure causes (Nicolaie et al., 2015). Furthermore, Nicolaie et al.
(2018) have extended the model for analysis of data that has a sizable proportion of cured
subjects. Both these topics, i.e., handling data with missing failure causes and data that
comes with cured subjects, have not received satisfactory attention in discrete time. Whilst
the vertical model possesses these attractive features, it cannot be naively applied to discrete
time competing risks data because the model was introduced as a continuous time model.
The main objective of this article is to modify this model and present it as a nonparametric
discrete time competing risks model additional to the nonparametric model suggested by
Davis and Lawrance (1989). The complication with discrete time data is excessive num-
ber of ties. Continuous time competing risks models are premised on the factorization of
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the full likelihood function into cause-specific likelihood functions assumption. This is not
possible in the presence of a disproportionately large number of ties. The model suggested
by Davis and Lawrance (1989) is one the models that have been advanced specifically for
analysis of discrete time competing risks data. In fact, this model is the first truly discrete
time competing risks model to be advanced in the competing risks literature. This model
was followed by the multinomial model (Ambrogi et al., 2009, Tutz and Schmid, 2016)
as the first regression model for analysis of discrete time data. Here, data are modelled
with discrete time version of cause-specific-hazards. Concerns have been expressed about
this model owing to estimation of a significantly larger number of cause-specific-hazard
parameters simultaneously. Recently, Lee et al. (2018) have advanced an alternate regres-
sion model, which addresses these reservation regarding the multinomial model (Ambrogi
et al., 2009, Tutz and Schmid, 2016) where the cause-specific-hazards are estimated indi-
vidually via the application of a binomial distribution within the GEE framework. Both
these models, that is, the multinomial model (Ambrogi et al.,2009, Tutz and Schmid, 2016)
and the binomial model (Lee et al., 2018) give rise to a regression model for the cumulative
incidence function, which has become notorious for complicating the assessment of covari-
ate effects. Berger et al. (2020) have since proposed a discrete time subhazard regression
model for the cumulative incidence function to address the limitations of the cause-specific-
hazard denominated regression model for the cumulative incidence function. The Davis
and Lawrance (1989) model proposes nonparametric discrete time cause-specific-hazards
for modelling data. We shall refer to this model as the cause-specific-hazards model. If the
vertical model proposes total hazards and relative hazards for characterizing data, it implies
that the standard summary statistics are now obtained from the total hazard and relative haz-
ard estimates in the place of the more familiar cause-specific-hazard estimates as suggested
by the cause-specific-hazards model. The most logical question that follows is whether the
two estimation methods produce the same estimates for the same quantity. For example,
if one method proposes direct estimation of cause-specific-hazards from data and the other
one suggests that the estimates for the same quantities are now derived from total and rel-
ative hazard estimates, then how do the two methods compare, and more importantly, how
do the standard errors for the two estimation methods compare. As a secondary objective of
this article, we attempt to address these questions. With the cause-specific-hazards and the
cumulative incidence functions as the most widely quoted pair for summarizing competing
risks data, we will focus on these quantities and their respective standard errors to address
these pertinent questions.

As already highlighted, Davis and Lawrance (1989) proposes cause-specific-hazards
for modelling data. Let T̃ and D represent time to failure and failure type respectively,
where D ∈ {1,2, . . .J} and J is the number of failure causes. Also, let C denote the time to
censoring. Observed competing risks data can be represented by yi = (ti,Di) for i = 1, . . .n
where Ti = min{T̃i,Ci}, such that Ti = ti is a failure time due to failure type j or censoring
time according to whether Di = j or 0. It is assumed that time to failure and censoring time
are in discrete units, i.e., T̃ ,C ∈ {1, . . .q} where q is a positive integer. The definition of
discrete time cause-specific-hazards for nonparametric purposes is given by

λ j(t) = P(T = t;D = j|T ≥ t) (1)
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for t = 1,2, . . .q and j = 1,2, . . .J. Suppose that at time t, n(t) and d( jt) denote the number
at risks and the number of failures due to failure type j, respectively. Davis and Lawrance
(1989) have shown that the observed data likelihood function is a kernel of a multinomial
likelihood function:

L =
q

∑
s=1

J

∑
j=1

d( js) logλ j(s)+(n(s)−d(s)) log(1−λ (s)) (2)

where d(s) = ∑
J
j=1 d( js) and λ (s) = ∑

J
j=1 λ j(s). As such, the MLE for λ j(s) is given by

λ̂ j(s) = d( js)/n(s)

for s = 1,2, . . .q and j = 1,2, . . .J. The estimates for the cumulative incidence functions are
then given by

F̂j(t) =
t

∑
s=1

Ŝ(s-1)λ̂ j(s) (3)

for t = 1,2, . . .q and j = 1,2, . . .J, where Ŝ(t) =
t

∏
s=1

(1− λ̂ (s)).

The vertical model proposes a factorization of the bivariate distribution of failure time
and failure type into a marginal distribution for failure time and a distribution for failure type
conditional on failure time as characterized via total hazards and failure type probabilities
conditional on failure time (relative hazards), respectively. For analysis of discrete time
competing risks data nonparametrically, we propose the following definition for discrete
time total hazards:

λ (t) = P(T = t|T ≥ t) =
J

∑
j=1

P(T = t;D = j|T ≥ t) =
J

∑
j=1

λ j(t)

for t = 1,2, . . .q. The total hazard λ (t) is the probability of failure, by any cause, at time t
given survival to time t. On the other hand, the relative hazard π j(t) is the probality that a
failure is attributable to cause j given that a failure has occurred at time t. The definition of
relative hazards is given by

π j(t) = P(D = j|T = t)

t = 1,2, . . .q and for j = 1,2, . . .J. The term "relative hazards" comes from:

π j(t) = P(D = j|T = t) =
P(D = j,T = t)

P(T = t)
=

P(D = j,T = t,T ≥ t)/P(T ≥ t)
P(T = t,T ≥ t)/P(T ≥ t)

=
λ j(t)

∑
J
j=1 λ j(t)

(4)

It follows from (4)that:

λ j(t) = λ (t)π j(t) (5)
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Thus, the cause-specific-hazard estimates are now estimated indirectly from total haz-
ard and relative hazard estimates via (5). All failures contribute to the estimation of the
total hazards, then, the total hazards are apportioned to cause-specific-hazards via relative
hazards. This formulation become very convenient in the presence of subjects with missing
failure causes because these subjects also contribute to the estimation of total hazards. The
expression for the cumulative incidence function is also given in terms of total and relative
hazards:

Fj(t) =
t

∑
s=1

S(s-1)λ (s)π j(s)

t = 1,2, . . .q and for j = 1,2, . . .J.

This concludes the exercise of re-framing the vertical model as a discrete time nonpara-
metric competing risks model. To determine the summary statistics, i.e., the estimates for
cause-specific-hazards and cumulative incidence functions we require the estimates for to-
tal hazards and relative hazards. Let θ = (πT ,λ T )T where λ = (λ (1),λ (2) . . .λ (q))T ,π =

(πT
1 ,π

T
2 . . .π

T
J-1)

T , and π j = (π j(1),π j(2) . . .π j(q))T . In Section 2 we demonstrate the esti-
mation of total hazards and relative hazards, that is, we determine θ̂ . This is followed by the
application of the proposed model in Section 3. We derive the standard errors for the cumu-
lative incidence function estimates in Section 4. This concludes the first part of our twofold
objectives. In Section 5, we address the second part of our objective, that is, to prove that the
estimates for cause-specific-hazards and cumulative incidence function as well as the corre-
sponding standard errors are identical by the proposed model or the cause-specific-hazards
model. We conclude the article with a discussion in Section 6.

2. Estimation

It is straightforward to determine the MLE’s for the total hazards and relative hazards.
The observed data likelihood function which is specified in terms of total hazards and rel-
ative hazards is differentiated with respect to these quantities. When the vertical model is
assumed, P(Ti = ti,Di = j), the contribution of subject i that failed at time ti due to failure
cause j to the observed data likelihood function is now replaced by P(Di = j|Ti = ti)P(Ti =

ti) while a censored subject i continues to contribute P(Ti > ti). Define an indicator vari-
able di j such that di j is 1 or 0 according to whether subject i failed by cause j or not and
let di = ∑

J
j=1 di j where di indicates failure by any cause for subject i. The observed data

log-likelihood function can be written as:

L (θ) =
n

∑
i=1

J

∑
j=1

di j logP(Di = j|Ti = ti)P(Ti = ti)+(1−di) logP(Ti > ti)

=
n

∑
i=1

J

∑
j=1

di j logπ j(ti)+
n

∑
i=1

di logP(Ti = ti)+(1−di) logP(Ti > ti)

= L (π)+L (λ )
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We can ignore L (π) because the estimates for the relative hazards can be obtained from
(4), that is:

π̂ j(t) =
λ̂ j(t)

∑
J
j=1 λ̂ j(t)

=
d( jt)/n(t)

∑
J
j=1 d( jt)/n(t)

=
d( jt)

d(t)

The log-likelihood function L (λ ) is a failure time log-likelihood function. It is straight-
forward to show that L (λ ) can be written as:

L (λ ) =
q

∑
s=1

d(s) logλ (s)+(n(s)−d(s)) log(1−λ (s))

Naturally,
∂L (λ

∂λ (s)
= 0 yields an MLE for λ j(s) given by

λ̂ (s) =
d(s)
n(s)

The estimates for total hazards and relative hazards can be plugged into appropriate
equations to recover the estimates for cause-specific-hazards and cumulative incidence func-
tions. In the next section we demonstrate the application of the proposed model.

3. Application

We apply the proposed model to data that comes with Ecdat R package (Croissant and
Graves, 2020). In these data 3343 recently unemployed individuals are tracked the moment
they lost their jobs until they are re-employed into part-time employment (339), full-time
employment (1073) or are censored (1255). Of the remaining 676, 574 were re-employed
but the type employment was not recorded. It is not clear with the other 102 subjects if
they were censored or were re-employed. We have excluded the 674 individuals to leave
a final sample of 2667 that were considered for analysis. Failure times assume values in
{1,2, . . .26,27,28} where time is measured in bi-weekly units. There are some covariates
that come with data such as unemployment benefits, disregard rate, replacement rate, etc.,
which are naturally ignored.

In the application of the proposed model we have computed the relative hazard and total
hazard estimates, respectively from:

π̂ j(t) =
d( jt)

d(t)
and λ̂ (t) =

d(t)
n(t)

The variances are respectively given by

V(π̂ j(t)) =
π̂ j(t)(1− π̂ j(t))

d(t)
and V(λ̂ (t)) =

λ̂ (t)(1− λ̂ (t))
n(t)
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These estimates are listed in Table 1 together with corresponding standard errors. We
have labelled full-time re-employment as cause 1 and part-time re-employment as cause 2.

Table 1: Maximum likelihood estimates for the total and relative hazards from the Verti-
cal Model as well as the cause-specific-hazards estimates from the Cause-Specific-Hazards
Model (with standard errors)

Model I Model II
Nonparametric Vertical Model Cause-Specific-Hazards Model

π̂1 λ̂ λ̂ 1 λ̂ 2

T1 0.752(0.022) 0.147(0.007) 0.110(0.006) 0.037(0.004)
T2 0.761(0.028) 0.104(0.006) 0.079(0.006) 0.025(0.003)
T3 0.763(0.034) 0.081(0.006) 0.062(0.006) 0.019(0.003)
T4 0.727(0.051) 0.048(0.005) 0.035(0.005) 0.013(0.003)
T5 0.748(0.037) 0.098(0.008) 0.074(0.006) 0.025(0.004)
T6 0.762(0.066) 0.037(0.006) 0.028(0.005) 0.009(0.003)
T7 0.779(0.039) 0.107(0.009) 0.083(0.009) 0.024(0.005)
T8 0.625(0.098) 0.029(0.006) 0.019(0.005) 0.011(0.004)
T9 0.825(0.060) 0.055(0.008) 0.045(0.008) 0.001(0.004)
T10 0.060(0.204) 0.009(0.004) 0.005(0.003) 0.005(0.003)
T11 0.838(0.066) 0.054(0.009) 0.046(0.009) 0.009(0.004)
T12 0.700(0.145) 0.021(0.007) 0.015(0.005) 0.006(0.004)
T13 0.756(0.075) 0.075(0.013) 0.057(0.011) 0.018(0.006)
T14 0.833(0.062) 0.099(0.016) 0.083(0.014) 0.017(0.007)
T15 0.864(0.073) 0.081(0.017) 0.069(0.015) 0.011(0.006)
T16 0.769(0.117) 0.059(0.016) 0.046(0.014) 0.014(0.008)
T17 0.889(0.105) 0.050(0.016) 0.044(0.015) 0.006(0.006)
T18 0.778(0.139) 0.059(0.019) 0.046(0.017) 0.013(0.009)
T19 0.667(0.192) 0.044(0.018) 0.029(0.015) 0.015(0.010)
T20 1.000(0.000) 0.025(0.014) 0.025(0.014) 0.000(0.000)
T21 0.571(0.187) 0.071(0.026) 0.041(0.019) 0.030(0.017)
T22 0.800(0.179) 0.067(0.029) 0.053(0.026) 0.013(0.013)
T23 0.000(0.000) 0.016(0.016) 0.000(0.000) 0.016(0.016)
T24 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
T25 0.000(0.000) 0.019(0.018) 0.000(0.000) 0.019(0.018)
T26 1.000(0.000) 0.045(0.031) 0.045(0.031) 0.000(0.000)
T27 0.833(0.152) 2.000(0.073) 0.167(0.068) 0.033(0.033)

Since π̂1(t)+ π̂2(t) = 1, we have only listed π̂1(t). We have also listed the cumulative
incidence function estimates together with corresponding standard errors in Table 2.

The cumulative incidence function estimates are obtained from:

F̂j(t) =
t

∑
s=1

Ŝ(s-1)λ̂ (s)π̂ j(s)
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Table 2: Maximum likelihood estimates for the Cumulative Incidence Function from the
Vertical Model (with standard errors)

Nonparametric Vertical Model

F̂1 F̂2

T1 0.110(0.006) 0.036(0.004)
T2 0.178(0.007) 0.058(0.005)
T3 0.225(0.008) 0.072(0.005)
T4 0.249(0.009) 0.082(0.005)
T5 0.299(0.009) 0.098(0.006)
T6 0.316(0.009) 0.103(0.006)
T7 0.364(0.010) 0.117(0.007)
T8 0.374(0.010) 0.123(0.007)
T9 0.397(0.011) 0.128(0.007)
T10 0.399(0.011) 0.130(0.007)
T11 0.421(0.011) 0.134(0.007)
T12 0.427(0.011) 0.137(0.008)
T13 0.452(0.012) 0.145(0.008)
T14 0.485(0.012) 0.152(0.008)
T15 0.511(0.013) 0.156(0.009)
T16 0.526(0.013) 0.162(0.009)
T17 0.539(0.014) 0.162(0.009)
T18 0.553(0.014) 0.166(0.009)
T19 0.562(0.015) 0.169(0.009)
T20 0.569(0.015) 0.169(0.009)
T21 0.579(0.016) 0.178(0.011)
T22 0.592(0.016) 0.181(0.011)
T23 0.592(0.016) 0.185(0.012)
T24 0.000(0.000) 0.000(0.000)
T25 0.592(0.016) 0.189(0.012)
T26 0.602(0.017) 0.189(0.012)
T27 0.637(0.021) 0.196(0.014)

The standard errors for the cumulative incidence function estimates as derived in the
next section are given by

V(F̂j(t)) =
t

∑
s=1

Var
(
Ŝ(s-1)λ̂ (s)π̂ j(s)

)
+2

t-1

∑
s=1

t

∑
k=s+1

Cov
(
Ŝ(s-1)λ̂ (s)π̂ j(s), Ŝ(k-1)λ̂ (k)π̂ j(k)

)
where:

V(Ŝ(s-1)λ̂ (s)π̂ j(s)) =
(
Ŝ(s-1)λ̂ j(s)π̂ j(s)

)2
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

+
n(s)−d(s)

d(s)n(s)
+

d(s)−d( js)

d(s)d( js)

)
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and,

Cov(Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)) =
(
Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)

)
×
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

− 1
n(s)

)
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Figure 1: The cumulative incidence function of exit to full-time and part-time

In Figure 1 we have plotted the cumulative incidence function estimates from the pro-
posed model because the proposed model and the cause-specific-hazards model produce
identical estimates for cumulative incidence function as will be shown in Section 5. Clearly,
the plot suggest that unemployed subjects are more likely to exit the state of unemployment
to full-time employment than to part-time employment.

4. Cumulative Incidence Function Standard Errors

The expression of standard errors for the cumulative incidence function estimates under
the vertical model is given by

V(F̂j(t)) =
t

∑
s=1

Var
(
S(s-1)λ (s)π j(s)

)
+2

t-1

∑
s=1

t

∑
k=s+1

Cov
(
S(s-1)λ (s)π j(s),S(k-1)λ (k)π j(k)

)∣∣∣∣
θ=θ̂

Let Qs
(
λ1, . . .λs-1,λs,π j(s)

)
= S(s-1)λ (s)π j(s)

and Qk
(
λ1, . . .λs-1,λs . . .λk-1,λk,π j(k)

)
= S(k-1)λ (k)π j(k), where s< k. We begin by com-
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puting the partial derivatives:

∂Qs

∂S(s-1)
= λ (s)π j(s)

∂Qs

∂λ (s)
= S(s-1)π j(s)

∂Qs

∂π j(s)
= S(s-1)λ (s)

∂Qk

∂S(s-1)
=

Qk

S(s-1)
∂Qk

∂λ (s)
=− Qk

1−λ (s)

Assuming that d(1),d(2) . . .d(s) are uncorrelated (Dinse and Larson, 1986),
then Cov(λ (l),λ (m)) = 0 when l ̸= m for l = 1,2 . . .q and m = 1,2 . . .q. It, therefore,
follows that:

V
(
Qs

)
=

 λ (s)π j(s)
S(s-1)π j(s)
S(s-1)λ (s)

V(S(s-1)) 0 0
0 V(λ (s)) 0
0 0 V(π j(s))

 λ (s)π j(s)
S(s-1)π j(s)
S(s-1)λ (s)


=
(
λ (s)π j(s)

)2Var(S(s-1))+(S(s-1)π j(s))2V(λ (s))

+(S(s-1)λ (s))2V(π j(s))

=
(
S(s-1)λ (s)π j(s)

)2
s-1

∑
l=1

λ (l)
n(l)(1−λ (l))

+
1−λ (s)
λ (s)n(s)

+
1−π j(s)
d(s)π j(s)

Thus,

V(Ŝ(s-1)λ̂ (s)π̂ j(s)) =
(
S(s-1)λ (s)π j(s)

)2
s-1

∑
l=1

λ (l)
n(l)(1−λ (l))

+
1−λ (s)
λ (s)n(s)

+
1−π j(s)
d(s)π j(s)

∣∣∣∣
θ=θ̂

=
(
Ŝ(s-1)λ̂ j(s)π̂ j(s)

)2
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

+
n(s)−d(s)

d(s)n(s)
+

d(s)−d( js)

d(s)d( js)

)
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We now consider:

Cov
(
Qs,Qk

)
= (S(s-1))2

λ (s)π j(s)
S(k-1)λ (k)π j(k)

S(s-1)

s-1

∑
l=1

λ (l)(1−λ (l))
n(l)

−S(s-1)π j(s)
S(k-1)λ (k)π j(k)

1−λ (s)
λ (s)(1−λ (s))

n(s)

= S(s-1)λ (s)π j(s)S(k-1)λ (k)π j(k)
( s-1

∑
l=1

λ (l)(1−λ (l))
n(l)

− 1
n(s)

)

Thus,

Cov(Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)) = Cov
(
Qs,Qk

)∣∣
θ=θ̂

=
(
Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)

)
×
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

− 1
n(s)

)

5. Proofs

In this section we demonstrate that estimates for cause-specific-hazards and cumula-
tive incidence function together with corresponding standard errors derived from the pro-
posed model and the cause-specific-hazards model are identical. Let λ̂V

j (t) and λ̂C
j (t) de-

note the estimates for the cause-specific-hazards via the proposed model and the cause-
specific-hazards model, respectively. Likewise, let F̂V

j (t) and F̂C
j (t) represent the estimates

for the cumulative incidence function that are produced by the proposed model and the
cause-specific-hazards model, respectively.

Beginning with the estimates for the cause-specific-hazards:

λ̂
V
j (t) = π̂ j(t)λ̂ (t) =

d( jt)

d(t)
×

d(t)
n(t)

=
d( jt)

n(t)
= λ̂

C
j (t)

It follows that the cumulative incidence function estimates by both models are identical,
that is:

F̂V
j (t) =

t

∑
s=1

Ŝ(s-1)λ̂ (s)π̂ j(s) =
t

∑
s=1

Ŝ(s-1)λ̂C
j (s) = F̂C

j (t)

To determine the standard errors for cause-specific-hazard and cumulative incidence
function estimates, we apply the delta method. We begin with standard errors for the cause-
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specific-hazard estimates. The standard error for λ̂
C
j (s) =

d(s)
n(s)

is well known and it is given

by

V(λ̂C
j (s)) =

λ̂ j(s)(1− λ̂ j(s))
n(s)

We now determine the expression for the variance of λ̂V
j (s) = λ̂ (s)π̂ j(s). Since

∂L

∂λ (l)∂π j(m)
= 0

for l = 1, . . .q; j = 1,2, . . .J;m = 1, . . .q, thus:

V(λ̂V
j (s)) =

(
∂λV

j (s)

∂λ (s)
,

∂λV
j (s)

∂π j(s)

)(
V(λ (s)) 0

0 V(π j(s))

)
×
(

∂λV
j (s)

∂λ (s)
,

∂λV
j (s)

∂π j(s)

)T ∣∣∣∣
θ=θ̂

= π j(s)2V(λ (s))+λ (s)2V(π j(s))
∣∣∣∣
θ=θ̂

= π̂ j(s)2V(λ̂ (s))+ λ̂ (s)2V(π̂ j(s))

where the partial derivatives are given by

∂λV
j (s)

∂λ (s)
= π j(s)

∂λV
j (s)

∂π j(s)
= λ (s)
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Therefore, the expression for V(λ̂V
j (s)) is given by

V(λ̂V
j (s)) = π̂ j(s)2V(λ̂ (s))+ λ̂ (s)2V(π̂ j(s))

= π̂ j(s)2 λ̂ (s)(1− λ̂ (s))
n(s)

+ λ̂ (s)2 π̂ j(s)(1− π̂ j(s))
d(s)

= π̂ j(s)λ̂ (s)
(

π̂ j(s)(1− λ̂ (s))
n(s)

+
λ̂ (s)(1− π̂ j(s))

d(s)

)
= λ̂ j(s)

(
d(s)π̂ j(t)−d(s)π̂ j(t)λ̂ (s)+n(s)λ̂ (s)−n(s)λ̂ (s)π̂ j(s)

n(s)d(s)

)
= λ̂ j(s)

(
d(s)π̂ j(t)−d( js)λ̂ (s)+n(s)λ̂ (s)−d(s)π̂ j(s)

n(s)d(s)

)
= λ̂ j(s)

n(s)−d( js)

n(s)

λ̂ (s)
d(s)

=
λ̂ j(s)(1− λ̂ j(s))

n(s)

= V(λ̂C
j (s))

Gaynor et al. (1993) showed in continuous time when competing risks data are ana-
lyzed nonparametrically, that the full log-likelihood function is a kernel of a multinomial
log-likelihood function as in (2), where the continuous time cause-specific-hazards are ap-
proximated with discrete time cause-specific-hazards λ j(t) at failure times. Therefore, the
expression for V(F̂C

j (t)) that is derived for continuous time competing risks data equally
applies in discrete time:

V(F̂S
j (t)) =

t

∑
s=1

Var
(
Ŝ(s-1)λ̂ j(s)

)
+2

t-1

∑
s=1

t

∑
k=s+1

Cov
(
Ŝ(s-1)λ̂ j(s), Ŝ(k-1)λ̂ j(k)

)
where,

Var
(
Ŝ(s-1)λ̂ j(s)

)
= Var

(
Ŝ(s-1)λ̂ j(s)

)
=
(
λ̂ j(s)Ŝ(s-1)

)2
(

n(s)−d( js)

d( js)n(s)
+

s-1
∑
l=1

d(l)
n(l)(n(l)−d(l))

)
(6)

and,

Cov
(
Ŝ(s-1)λ̂ j(s), Ŝ(k-1)λ̂ j(k)

)
= Cov

(
Ŝ(s-1)λ̂ j(s), Ŝ(k-1)λ̂ j(k)

)
=
(
λ̂ j(s)Ŝ(s-1)λ̂ j(k)Ŝ(k-1)

)
×
(
− 1

n(s)
+

s-1

∑
l=1

d(l)
n(n)(n(l)−d(l))

)
(7)
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To show that V(F̂C
j ) = V(F̂V

j ), we need to demonstrate that:

V
(
Ŝ(s-1)λ̂ j(s)

)
= V

(
Ŝ(s-1)λ̂ (s)π̂ j(s)

)
and,

Cov
(
Ŝ(s-1)λ̂ j(s), Ŝ(k-1)λ̂ j(k)

)
= Cov

(
Ŝ(s-1)λ̂ (s)π̂ j(s), Ŝ(k-1)λ̂ j(k)

)
Now,

V(Ŝ(s-1)λ̂ (s)π̂ j(s)) =
(
Ŝ(s-1)λ̂ j(s)π̂ j(s)

)2
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

+
n(s)−d(s)

d(s)n(s)

+
d(s)−d( js)

d(s)d( js)

)
(8)

Note that:

(n(s)−d(s))
d(s)n(s)

+
(d(s)−d( js))

d( js)d(s)
=

d( js)ns −d(s)d( js)+n(s)d(s)−n(s)d( js)

d(s)n(s)d( js)
=

n(s)−d( js)

n(s)d( js)

Substituting this result in (8) and using the fact that λ̂ j(s) = π̂ j(s)λ̂ (s), we now have:

V
(
Ŝ(s-1)λ̂ (s)π̂ j(s)

)
=
(
Ŝ(s-1)λ̂ j(s)

)2
( s-1

∑
l=1

d(l)
nl(n(l)−d(l))

+
(n(s)−d( js))

d( js)n(s)

)
= V

(
Ŝ(s-1)λ̂ j(s)

)
We now consider:

Cov(Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)) =
(
Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)

)
×
( s-1

∑
l=1

d(l)
n(l)(n(l)−d(l))

− 1
n(s)

)
(9)

If we replace λ̂ (.)π̂ j(.) with λ̂ j(.) in the RHS of (9), then:

Cov(Ŝ(s-1)λ̂ (s)π̂ j(s)Ŝ(k-1)λ̂ (k)π̂ j(k)) = Cov(Ŝ(s-1)λ̂ j(s)Ŝ(k-1)λ̂ j(k))

This completes the proof that; V(F̂C
j (t)) = V(F̂V

j (t)).

6. Conclusion

We have presented the vertical model as a nonparametric model for analysis of discrete
time competing risks data. We also demonstrated that the proposed model and the cause-
specific-hazards model produce identical estimates. We focussed on the estimates for the
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cause-specific-hazards and the cumulative incidence functions. We also showed that the
standard errors for the estimates of these quantities were identical under both models. In-
deed, it is a roundabout way of estimating the cause-specific-hazards, however, there are
cases in practice where these quantities cannot be estimated directly from the data such as
when some of the subjects have failed with unknown failure causes. Furthermore, the cause-
specific-hazards are not appropriate for application in the presence of a sizable proportion
of cured subjects. Nicolaie et al. (2015) have extended the model to handle missing failure
causes and the same authors, Nicolaie et al. (2018) have upscaled the model to handle cured
subjects. The cause-specific-hazards model cannot handle these data complications. The
proposed model, therefore, offers a possibility that the proposed model can also be upscaled
to handle these challenges in discrete time. Ndlovu et al. (2020) have presented the vertical
model as a nonparametric model for analysis of discrete time data that comes with missing
failure causes. Another data complication that has not been explored as yet in the literature
is the possibility that data might come with missing failure causes as well as cured subjects.
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Figure 2: The KM-Survival Function

In clinical trials of a drug for treatment of some cancer, for example, implicit in the
study is the expectation that data from that study may have a significant proportion of cured
subjects if the drug proves to be effective against the cancer. It is also possible that the fail-
ure causes for some of the failures may not be recorded. The subjects with missing failure
causes and cured subjects are distinct subjects because cured subjects are assumed to be
mixed with censored subjects, whereas missing failure causes relate to subjects that failed.
It is, therefore, not inconceivable, that data may come with missing failure causes and cured
subjects. In fact, this very data set that was used for illustrative purpose in this article has
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missing failure causes and it also presents some evidence that there is a portion of cured
subjects, albeit, minimal.

In Figure 2 we have plotted the KM survival function estimate for 3343 subjects. It
is evident from the plot that the survival function does not approach zero fast enough, i.e.
there is a portion of cured subjects. This means the cause-specific-hazards and cumulative
incidence function estimates that were obtained from the proposed model are understated
and the extent of bias is directly proportional to the relative size of cured subjects. This is
an area that requires further exploration and our opinion is that the vertical model is a strong
candidate for handling such data.
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